# Data Mining a Human Digital Twin for Health Assessment and Intervention

Diane J. Cook

Washington State University

djcook@wsu.edu http://casas.wsu.edu



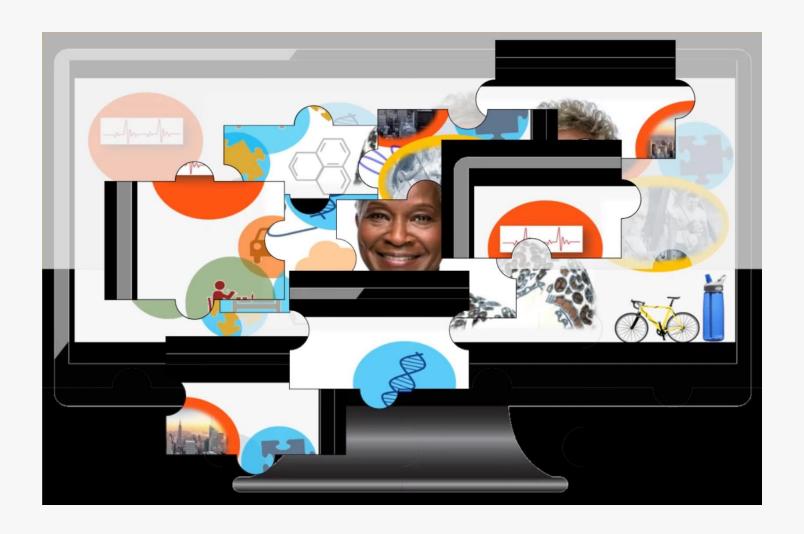


# What is a Human Digital Twin?





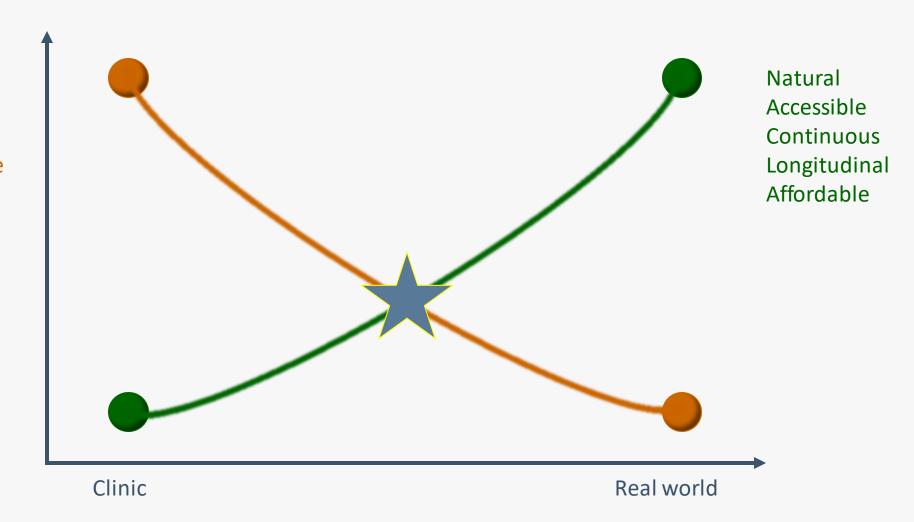
# What is a Human Digital Twin?



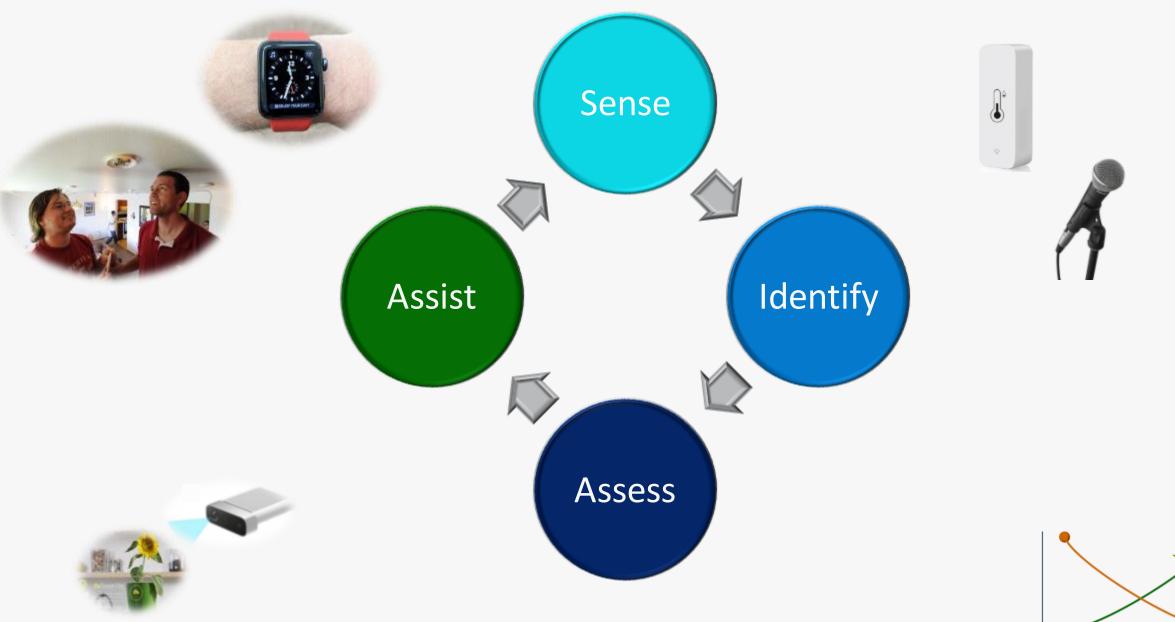


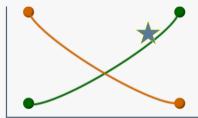
### "In-the-wild"

Reliable
Feasible
Objective
Intepretable
Repeatable











#### Sense: Smart Home







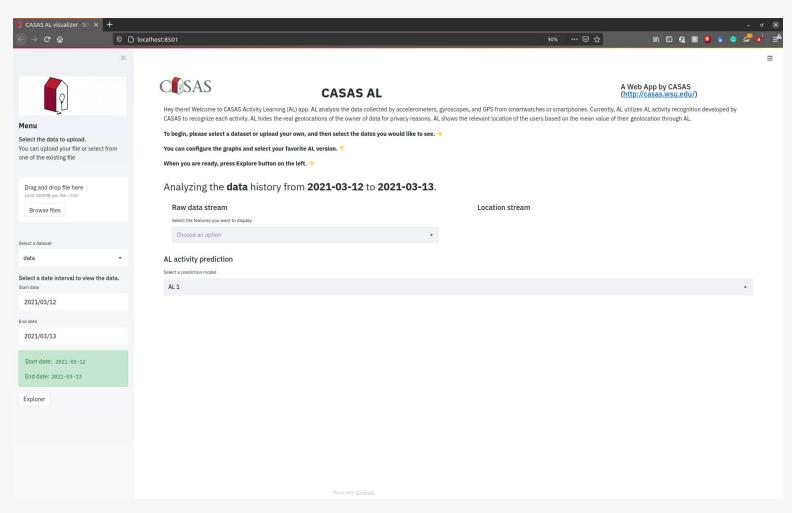
2017-02-22 11:42:48.400547 LS207 50





#### Smartwatch











### Identify: Behavior Markers



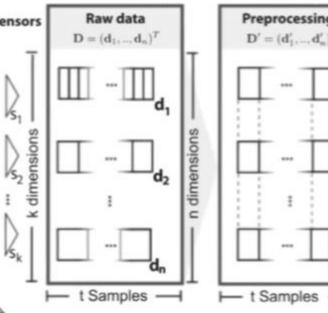


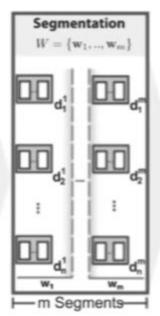
| odality | Time Period | Markers                                                                                                                                                                                                                                                                                                                        | Modality | Time Period | Markers                                                                                                                                                                                                                                                                                                                                                         |
|---------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | day         | number of sensor readings<br>number of distinct activities performed<br>number of distinct locations visited<br>time (seconds) spent on each activity                                                                                                                                                                          |          | day         | total acceleration<br>total rotation<br>number of missing readings<br>total distance traveled                                                                                                                                                                                                                                                                   |
|         |             | time (seconds) spent at each location                                                                                                                                                                                                                                                                                          |          |             | time (seconds) spent on each one-class activity<br>and each primary activity                                                                                                                                                                                                                                                                                    |
|         |             | time of day (seconds past midnight) for first occurrence of each activity                                                                                                                                                                                                                                                      |          |             | time spent at each location type                                                                                                                                                                                                                                                                                                                                |
|         |             | time of day (seconds past midnight) for first visit to each location                                                                                                                                                                                                                                                           |          |             | time of day (seconds past midnight) for first occurrence of each primary activity                                                                                                                                                                                                                                                                               |
|         |             |                                                                                                                                                                                                                                                                                                                                |          |             | time of day (seconds past midnight) for first<br>visit to each location type                                                                                                                                                                                                                                                                                    |
|         | hour        | number of sensor readings<br>number of distinct activities performed<br>number of distinct locations visited<br>time spent on each activity                                                                                                                                                                                    |          | hour        | total acceleration total rotation number of missing readings time spent on each one-class activity                                                                                                                                                                                                                                                              |
|         |             | time spent at each location                                                                                                                                                                                                                                                                                                    |          |             | time spent on each primary activity                                                                                                                                                                                                                                                                                                                             |
| ome     | overall     | statistics for daily behavior markers: mean, median, standard deviation, max, min, zero/mean crossings, interquartile range, skewness, kurtosis, signal energy statistics for hourly behavior markers: mean, median, standard deviation, max, min, zero/mean crossings, interquartile range, skewness, kurtosis, signal energy | watch    | overall     | time spent at each location type statistics for daily behavior markers: mean, median, standard deviation, max, min, zero/mean crossings, interquartile range, skewness, kurtosis, signal energy statistics for hourly behavior markers: mean, median, standard deviation, max, min, zero/mean crossings, interquartile range, skewness, kurtosis, signal energy |
|         |             | regularity index based on hourly values for<br>number of sensor readings: within weeks,<br>within weekdays, between weeks                                                                                                                                                                                                      |          |             | regularity index of total acceleration: within weeks, within weekdays, between weeks                                                                                                                                                                                                                                                                            |
|         |             | regularity index based on hourly values for<br>number of activities performed: within<br>weeks, within weekdays, between weeks                                                                                                                                                                                                 |          |             | regularity index of total rotation: within weeks, within weekdays, between weeks                                                                                                                                                                                                                                                                                |
|         |             | regularity index based on hourly values for<br>number of locations visited: within weeks,<br>within weekdays, between weeks                                                                                                                                                                                                    |          |             | regularity index of total distance: within weeks, within weekdays, between weeks                                                                                                                                                                                                                                                                                |
|         |             | circadian rhythm: sensor reading count,<br>number of activities, locations visited                                                                                                                                                                                                                                             |          |             | circadian rhythm: total acceleration, total rotation, total distance                                                                                                                                                                                                                                                                                            |

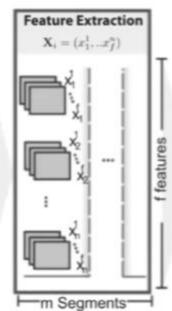


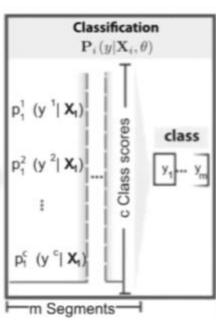
# Identify: Human Activity Recognition











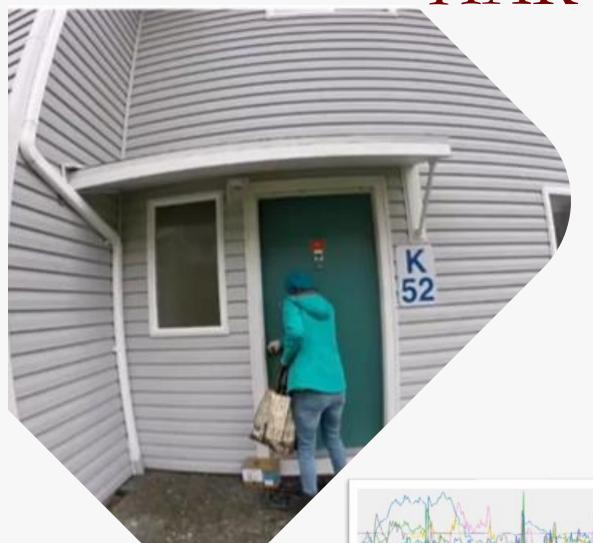












- Noise
- Activity variations
- Semantic ambiguity
- Crowdsourced ground truth
- Small datasets
- Imbalanced class distributions

#### (that makes it fun)

- Reshape the activity space
- Change point detection
- Domain adaptation
- Multi-task (joint) prediction
- Contrastive pretraining

[IEEE Sensors 2025, ACM TIST 2024&2020, KDD 2020, AAAI 2017]



### Assess: Predict Measures



change1

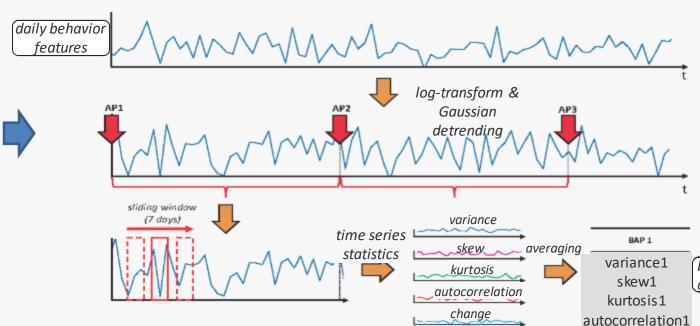
(n=39 older adult subjects, smart home behavior markers)

#### Clinical scores

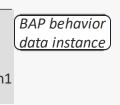


#### Multi-year participants







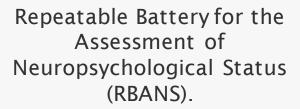


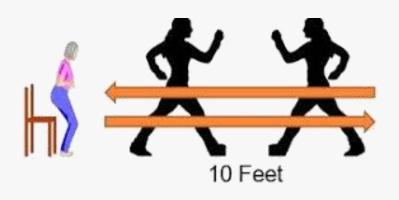




#### Assess







Timed Up and Go Test (TUG)



Instrumental Activities of Daily Living – Compensation (IADL-C)

Regression results (Pearson's r)

RBANS 0.78

TUG 0.80

0.61 (IADL-C F4, 0.88)

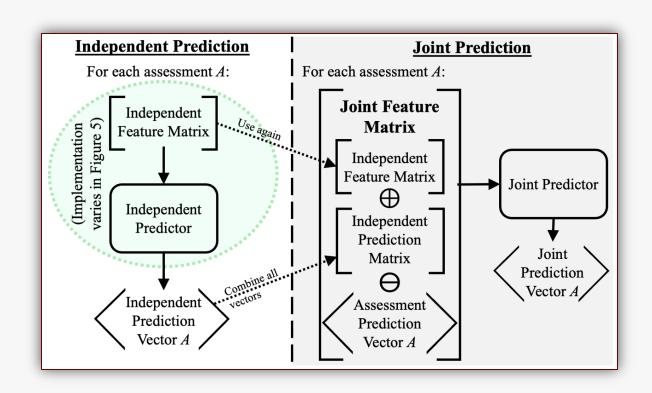
IADL-C



#### Assess: Multi-task Inference

(n=21 healthy older adult subjects)



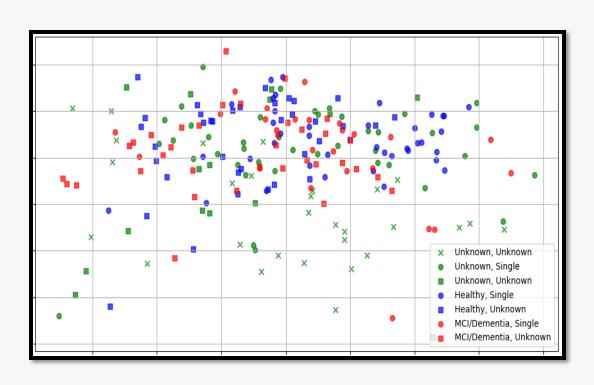


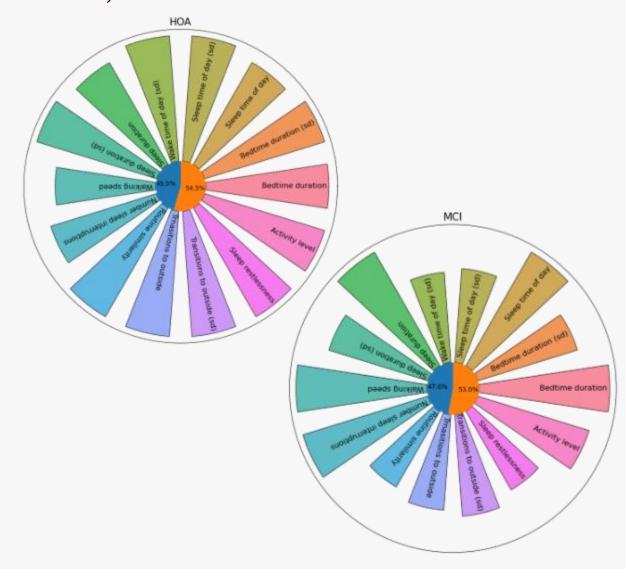
| Measure<br>(r) | Behaviorome –<br>Independent | Behaviorome -<br>Joint |
|----------------|------------------------------|------------------------|
| WTAR           | 0.323                        | 0.879                  |
| RBANS          | 0.358                        | 0.962                  |
| TICS           | 0.358                        | 0.188                  |
| FAS            | 0.498                        | 0.806                  |
| TUG            | 0.353                        | 0.492                  |
| DEX            | 0.617                        | 0.881                  |
| ADLC           | 0.303                        | 0.437                  |
| Average        | 0.309                        | 0.621                  |



# Assess: Predict Cognitive Diagnosis

(n=137 labelled, 85 unlabelled smart homes)

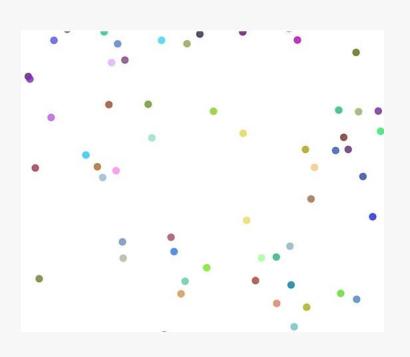




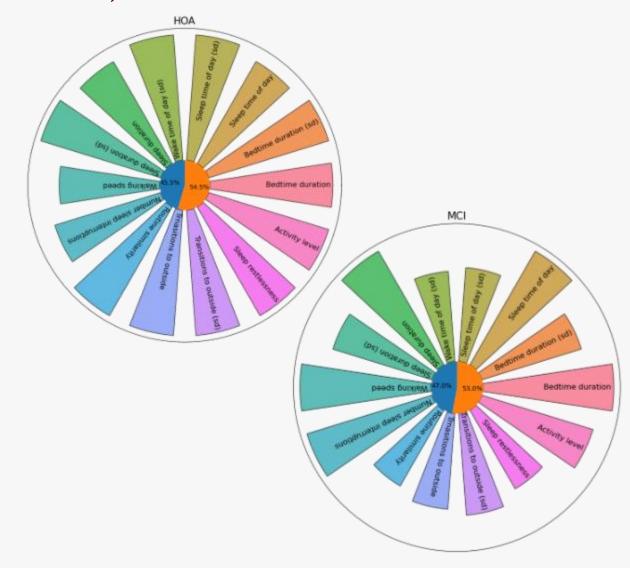


# Assess: Predict Cognitive Diagnosis

(n=137 labelled, 85 unlabelled smart homes)



|                     | Accuracy | F1    |
|---------------------|----------|-------|
| Decision<br>tree    | 0.445    | 0.397 |
| Logistic regression | 0.526    | 0.454 |



# Contrastive Pretraining























[Salim 2024]

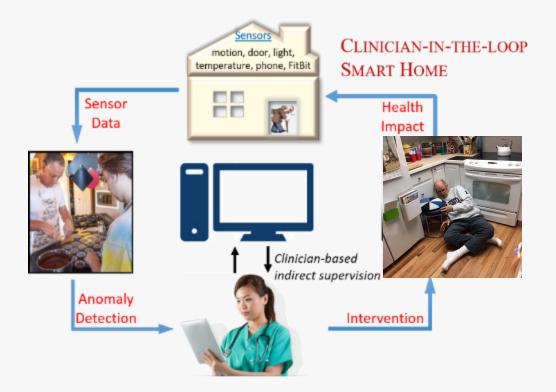
| Pulled towards each other |  |
|---------------------------|--|
|---------------------------|--|



|                      | Accuracy | F1    |
|----------------------|----------|-------|
| Decision<br>tree     | 0.445    | 0.397 |
| Logistic regression  | 0.526    | 0.454 |
| TCN                  | 0.577    | 0.463 |
| TCN with pretraining | 0.854    | 0.770 |



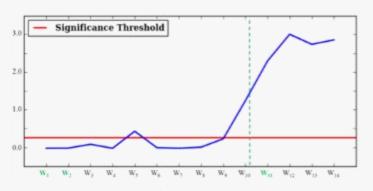
## Assess: Detection of condition flareups



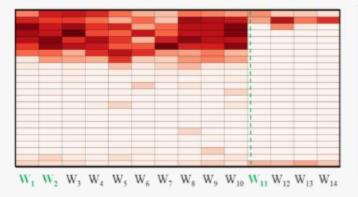


# CIL: Behavior change detection











Sleep

**Enter Home** 



# CIL: Clinician-guided anomaly detection



| Age | Sex | Health<br>Conditions | Health<br>Events        |
|-----|-----|----------------------|-------------------------|
| 89  | F   | Hypoxia              | Depression,<br>Weakness |
| 83  | M   | PD, Sjogren's        | Nocturia,<br>Falls      |
| 88  | F   | COPD,<br>oxygen      | Depression              |
| 75  | M   | PD                   | Falls                   |
| 89  | F   | CHF                  | Nocturia                |

Health event-related sensor readings 0.02% of all data

| Health event                                                                 | Indirectly-      | Unsupervised | Supervised |
|------------------------------------------------------------------------------|------------------|--------------|------------|
|                                                                              | supervised (CIL) | (iForest)    | (SVM)      |
| Fall, nocturia, depression/sleep, depression/speed, depression/sit, weakness | 0.133            | 0.064        | 0.047      |



#### Intervene: EMMA

|   | Carrier 중                  |          |             | 7:23 PM                                |                            | 94%     |  |
|---|----------------------------|----------|-------------|----------------------------------------|----------------------------|---------|--|
|   |                            | ODAY     | CALENDAR    | PROFILE                                | NOTES                      | ?       |  |
|   | + Add Entry/Event          |          |             | Monday S                               | Monday September 04        |         |  |
|   | 9:00 AM Breakfast With Jim |          |             | Click any item in the                  | To Do list for more inform | mation  |  |
|   |                            |          |             | <b>✓</b> Water Plants                  | Water Plants               |         |  |
| • |                            |          |             | Breakfast With Jim 09:00 AM - 10:00 AM |                            |         |  |
|   | 10:00 AM-                  |          |             | Lunch with M                           | fartha 11:00 AM - 12:00    | PM      |  |
|   | Lunch with Martha          |          | Enter_Home  | o c                                    | 7:08 PM                    |         |  |
|   | 12:00 PM-                  | 12:00 PM |             | Eat                                    | Ċ                          | 7:08 PM |  |
|   | 1:00 PM —                  |          | Wash_Dishes | o<br>(1                                | 7:09 PM                    |         |  |
|   |                            |          |             |                                        |                            |         |  |

| ( <del>*</del> ) | Predicted<br>time: 06:15 PM | Take Medicine | Click to Confirm | > 30 minutes<br>before predicted<br>task time |
|------------------|-----------------------------|---------------|------------------|-----------------------------------------------|
| <b>(</b>         | Predicted time:<br>05:52 PM | Take Medicine | Click to Confirm | 30 minutes<br>before predicted<br>task time   |
| <b>(*)</b>       | Predicted time:<br>05:32 PM | Take Medicine | Click to Confirm | 10 minutes<br>before predicted<br>task time   |
| Á                | Predicted<br>time: 05:14 PM | Take Medicine | Click to Confirm | After predicted task time                     |



# Digital Memory Notebook

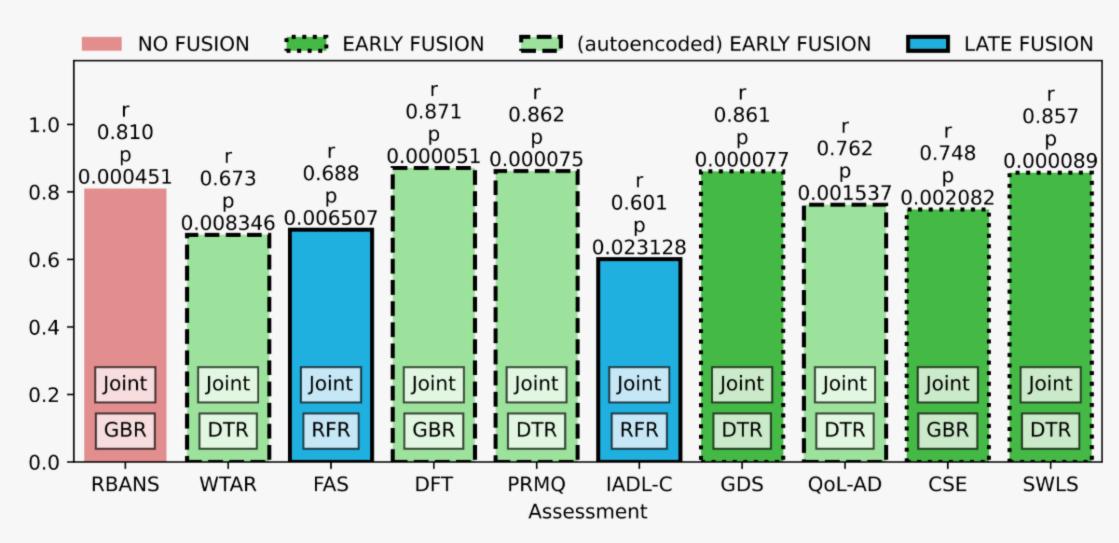




#### From Intervene to Assess



(n=14 subjects with amnestic MCI; mean age 74; 10f, 4m)

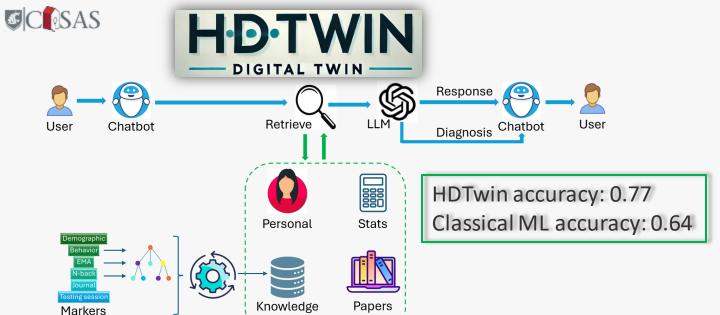




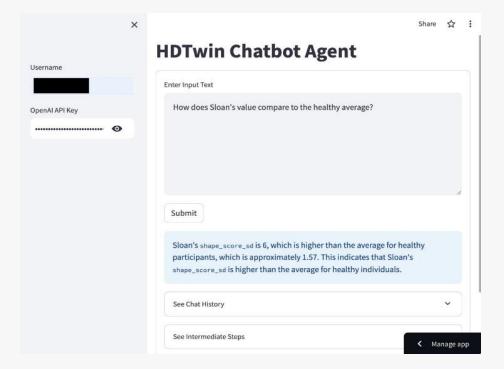
#### LLMs as the Puzzle Glue



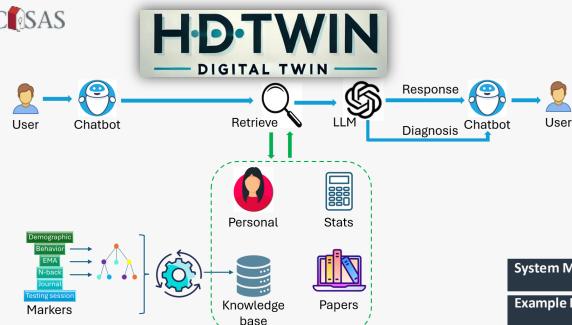




- Demographic markers
- Behavior markers
- EMA markers
- N-back markers
- Speech markers (audio journal)
- Testing session markers (text)
- Prior research (paper abstracts)



base



- Demographic markers
- Behavior markers
- EMA markers
- N-back markers
- Speech markers (audio journal)
- Testing session markers (text)
- Prior research (paper abstracts)

You are a knowledgeable health assistant designed to diagnose someone as "healthy" or **System Message** "mild cognitive impairment" using diagnosis rules and relevant personal information. Diagnose Sloan as healthy or mild cognitive impairment by applying the following rules to **Example Prompt** Sloan's information. Diagnosis Rules Sloan's Information: shape\_learning\_rate:9 shape score sd:6 journal text: made a list and went to the store and got everything on it and didn't alter from it interview assessment: Category Fluency (Animals): Participant's Answer: "turkey" Rating: 2 <text removed for brevity> Answer using the format: Diagnosis:... Explanation: ... **Example Response** Diagnosis: Mild Cognitive Impairment Explanation: Based on the provided information, Sloan's shape\_score\_sd is 6, which is greater than 2.5, and the shape learning rate is 9, indicating a high learning rate. According to Rule #3, when shape score sdisgreater than 2.5 and shape learning rate is higher than 1.5, the

individual is more likely to have mild cognitive impairment. Additionally, some of Sloan's interview\_assessment ratings are <= 3, such as the ratings for Category Fluency (Animals) and

Letter Fluency (F), further supporting the diagnosis of mild cognitive impairment.

HDTwin accuracy: 0.77

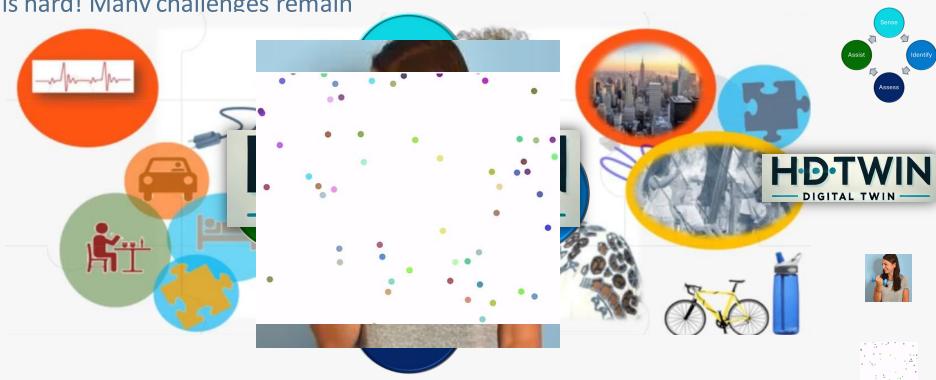
Classical ML accuracy: 0.64



## Takeaways

- Machine learning empowers digital twins
- Digital twins improve health assessment and intervention
- LLMs can assist with DT creation, ML explanation
- Digital twins can improve traditional methods







#### Thank you

Diane J. Cook

Washington State University

djcook@wsu.edu http://casas.wsu.edu

